AEMO EARLY WORK ON OPTIONAL FIRM ACCESS (OFA)

AEMC OFA Public Forum 14 August 2014, Sydney

PRESENTED BY BEN SKINNER

WHAT IS ACCESS SETTLEMENT?

PRESUMED BENEFITS OF ACCESS SETTLEMENTS VERSUS STATUS QUO

- Firm generators get more reliable RRN settlements
 Reduce congestion risk for hedged generators
- Need to rebid during congestion removed
- More efficient dispatch: merit-order restored
- Greater use of network when looped
 - i.e. small co-efficient terms don't constrain-off large coefficient terms
- Firmer inter-regional instruments
- No negative inter-regional settlement residue
 o No clamping
- More predictable dispatch and price outcomes
 - Reduce major dispatch swings and prices lurching to cap or floor

- Access settlements is built on top of a hub & spoke network representation
 - Locational prices indirectly calculated from our constraint representations
- OFA built on current regions
 - Very large and don't represent true pinchpoints

- Dispatch and settlement environments divorced
 - As-gen versus Sent-out
 - Some loads netted off ("auxiliaries"....variously defined)
 - Non-conformance energy settled
 - o 5-minute dispatch versus 30-minute settlement
 - o Market price cap and floor, constraint violations
 - Settlement RRP versus Dispatch ROP (price over-rides)
- Many generators and responsive loads non-scheduled
 Outside of access settlement, but affect flowgate capacity
- Generators are operated in portfolios
 - Non-atomistic bidding incentives

- 1. Attempt to verify the workability of the access settlements algebra operating on top of real world
 - By building a model as close as possible to our real settlements data
- 2. Considering the outputs of the above, postulate and test changed bidding incentives.
 - More efficient dispatch?
 - More reliable hedging?
- Dispatch and Training Simulator
 - Power system model tied to NEMDE model
 - Intricate (and inflexible)
 - Select historical congestion events and study AS results

BUILDING THE MODEL REVEALED ISSUES

- TFR AS design prototype required further refinement
 - Access definition by station or unit?
 - Dispatch or settlement metering?
 - Loss factors handling
 - Constraint violation
 - o 5 versus 30 minute settlement
 - Marginal prices below price floor
 - Price over-ride market conditions
- These matters explored with AEMC
 - Some resolved in AEMC interim report
 - Aiming for clarification of others by end 2014
 - Seeking external views on these matters

RE-RUNNING EVENTS PROGRESSING SLOWLY

- Simulator backcast (much) less volatile prices...???
 Possibly due to removing meter noise & non-conformance
- Recent NEM history reviewed for events where AS would change behaviours
 - Start with simple constrained-off/floor-price bidding events
 - Numerous recent rapid rebidding events with sudden and major changes of flows, prices and dispatch
 - But all have been complicated by other issues
 - Portfolio positions around a network loop
 - Withdrawal of critical constrained on generation
 - Last minute rebidding
 - Re-bids related to thirty-minute settlement
 - Non-scheduled generation
 - These matters outside the scope of access settlement to address

- Submissions due 4 Sep
 - Do you have a view on the AS design issues that have emerged?
 - E.g. loss factors & 30 minute settlement
 - Please suggest some recent events we could study
 - "clean" of these complications
 - How can we remove these complications from the incentive issue being tested?
 - Is a ceteris paribus model really possible?

http://www.aemo.com.au/Electricity/Market-Operations/Optional-Firm-Access

