RESTRUCTURING LACK OF RESERVE (LOR) CRITERIA

AEMC Stakeholder conference 5 October 2017

PRESENTED BY BEN SKINNER

CONTENTS

- 1. Background and problem
- 2. The solution
- 3. Variable variables
- 4. Bayesian belief networks
- 5. Contingencies
- 6. Publication
- 7. The Guidelines
- 8. Timeframes
- 9. Discussion

LACK OF RESERVE BACKGROUND

- LOR 1,2,3 are short-term (<8 days) alert levels
- Indicate risk of, or actual, load shedding
 - To seek a market response to the risk
 - o If none, LOR2 & 3 can trigger AEMO intervention:
 - Recall network outages
 - Dispatch Reliability & Reserve Trader (RERT) Capacity
 - Direct participants
- LOR3: Actual, or expected (>50% likely) load shedding
- LOR2: Actual or expected minus largest generator**=load shedding
- LOR1: Actual or expected minus two largest generators=load shedding

**Some, but not all, network contingencies are also considered

THE PROBLEM

- Very simplistic way to assess reliability risk
 - Assumes variables, like demand and wind production, are constant (deterministic) and only large generators can fail
 - But the variables are getting more variable, whilst large generators are getting smaller
 - On 8 Feb, SA demand under-forecast by 400MW 4 hours out

- LOR2 observed only 1 hour before actual load shedding
 - o No contingencies
- Too late for response or intervention

THE SOLUTION

• Retain contingency risk, but also a probability of the variables moving unfavourably

SLIDE 6

- 1. Operational Demand
- 2. AWEFS/ASEFS forecast (all large-scale intermittent gens)
- 3. Aggregate of non-int. generator availability bids
 o Observed to significantly decline in hot weather
- Analyse the historical predictability of these variables as a group
 - By analysing regional surplus: 2 + 3 1 = "RXS"

- Every half-hour in NEM history we have a record of at least 336 half hours of RXS forecasts for each region
 - Compare this to the actual RXS to get RXSerror
 - o Truncate analysis to first 96 hours of forecast
 - Create a RXSerror distribution
- Identify an acceptable probability of unfavourable RXS error
 - So that, 6 hours out, LOR2 fails to forecast an actual load shed event no more often than about once in 10 years
 - Historical analysis suggests:
 - [96%] Probability of favourable exceedance is ~1 day in 10 years = Confidence Interval
 - Will increase LOR2 days <50% from existing [Note this interval continues to be studied and refined]

BAYESIAN BELIEF NETWORK

• From historical data, can determine how much RXS varies in relation to input states

INPUT STATES

- Many input conditions are known at the time of the forecast
- Those shown to be most significant are:
 - $\circ~$ How far ahead the forecast is
 - o Temperature forecast for the half hour being forecast
 - o Wind forecast for the half hour being forecast
 - The demand forecast error at the present time

- Use these input states to determine the RXS distribution for the present conditions.
- FUM is the 4% tail.

96% confidence interval = FUM (Slide simplified – BBN uses 20 MW increments)

LCR (CONSIDERED CONTINGENCIES)

- Existing rules require considering largest generator risk, permits AEMO discretion on network contingencies
- AEMO has progressively considered some, but not all, network contingencies
 - Lines creating areas of concern:
 - E.g. Basslink, Heywood, windfarm collector lines
 - This has been manual and not transparent
- Project will formalise this:
 - Publish the list of considered network contingencies
 - o Automate their inclusion in the system

PUBLICATIONS

- Unchanged from present
- Market notices when LOR condition reached
- PASA tables
 - "CalculatedLOR1 level" and "CalculatedLOR2 level"
 - Instead of a fixed number, will be greater of LCR or FUM

THE GUIDELINES

- "LOR guidelines" will explain all the above, including:
 - RXS Definition and derivation of its distribution
 - Relevant input states
 - Confidence interval [96%] and FUM
 - Considered contingencies
 - o Definitions for LOR3, 2, 1
 - Explanation of training the Bayesian Belief Network
 - o Publications
- Future guidelines subject to a consultation process
 - V0.1 to be published 17 October on AEMO website
 - Submissions please

- Key 2017-18 Summer Readiness Project
 AER report into 8/2/17 → Finkel chapter 1
 ➢ COAG/ESB expectation
- AEMO's project on track for 1 Dec completion
 Offline trial till Rule made
- If Rule made 19 Dec 2017, will activate 9 Jan 2018
 AEMC prioritisation made this possible thanks!
 - Guidelines V0.1 published 17 October 2017
- Guidelines approach enables continuous improvement
 - We have described V1.0 design only. Future versions:
 - Network constraint forecast error
 - Changed input states list
 - Refined confidence interval

DISCUSSION

