

ISF PRELIMINARY RESEARCH RESULTS: LOCAL NETWORK CHARGES & VIRTUAL NET METERING

AEMC LGNC CONSULTATION WORKSHOP ED LANGHAM, LAWRENCE MCINTOSH SYDNEY, 15 MARCH 2016

NOTE: INCLUDES MINOR AMENDMENTS FROM WORKSHOP VERSION

PRESENTATION OVERVIEW

□ The ISF/ARENA project

□ Network charges – what happens now

LNC calculation methodology

- Development process
- Principles
- o Components
- o Precedents
- Value calculation
- Tariff calculation

Preliminary trial results:

- LNC values
- Financial impacts for customers and NSPs

Preliminary Conclusions

THE PROJECT: FACILITATING LOCAL NETWORK CHARGES* AND LOCAL ELECTRICITY TRADING**

* ~LOCAL GENERATION NETWORK CREDIT ** aka VIRTUAL NET METERING (VNM)

THE PROJECT IS THE FIRST QUANTITATIVE TESTING OF AN LGNC IN THE AUSTRALIAN MARKET

THE PROBLEM WE'RE TRYING TO ADDRESS

- Full network charges are paid by customers irrespective of where the electricity was sourced (across the street or 250km away)
 - DG sell at wholesale and buy back at retail prices (incl. full network and retail/energy charges)
 - Lower use of system costs not recognised for locally consumed DG
 - In context of Rule Change: "The value of (esp. smaller) DG exports to the local network is not currently recognised"
 - Strong incentive for customers (and product developers) to focus on "behind the meter" solutions & reduce grid consumption
 - Perverse incentive to duplicate infrastructure (private wires)

Sub-optimal generator sizing & operation in terms of avoiding future network costs

Status quo will increase costs for consumers left using *only* grid electricity, as infrastructure costs are recouped from smaller sales volumes

ISF:UTS

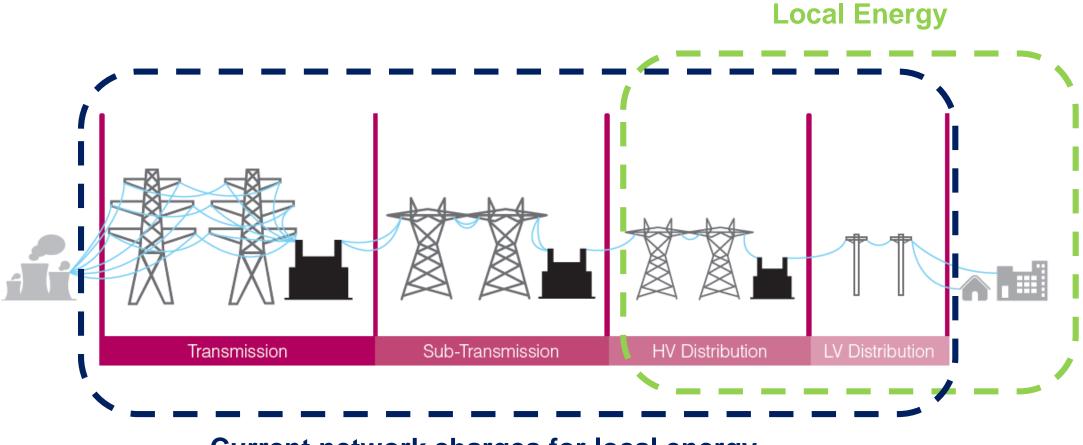
WHAT WE'RE DOING

Objective: to facilitate local network charges & local electricity trading

- ➢ Five case studies, or "virtual trials", of LNC and LET
- > A recommended methodology for calculating LNCs
- An assessment of the technical requirements and indicative costs for the introduction of LET
- Economic modelling of the benefits & impacts of LNCs and LET
- Increased industry understanding of LNCs and LET
- Specific consultation and support for rule change proposal(s)

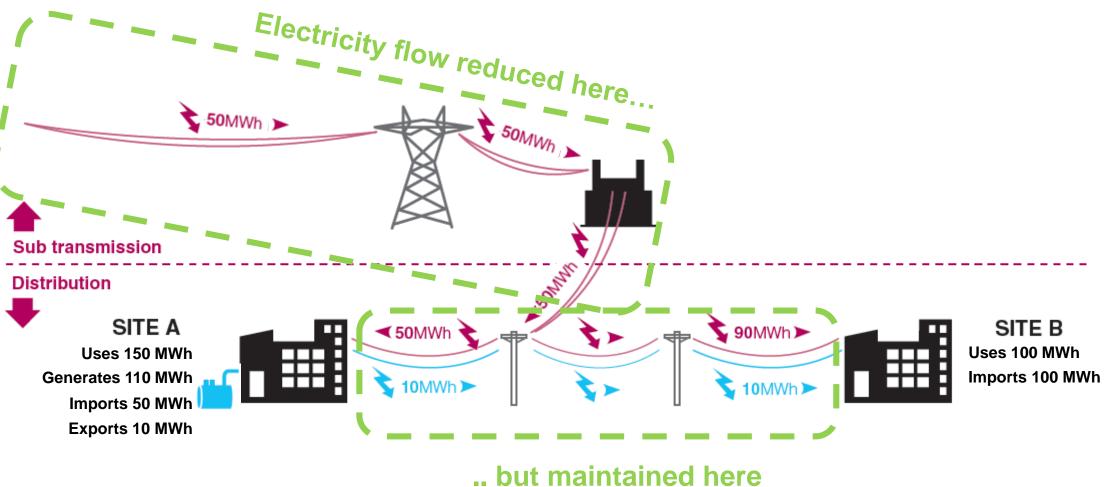
WHO'S INVOLVED

TIMEFRAME


	May	Jun	Inl	Aug	Sep	Oct	Nov	Dec	an-16	Feb	Mar	Apr	May	Jun	Jul
Task 1: PROJECT INCEPTION															
Task 2: BACKGROUND RESEARCH															
Task 3: STAKEHOLDER ENGAGEMENT											\star				
Strategic Reference Group															
Steering Group															
NSP methodology workshop															
Task 4 &5: TRIALS: LNC AND VNM															
Byron Shire/ Willoughby Council															
Moria Shire and Swan Hill															
Wind energy - Wannon Water															
Fringe of Grid - Ergon															
Task 6: REFINE LNC METHODOLOGY															
Task 7: ECONOMIC MODELLING															
TASK 8: REPORTING															
TASK 9: PROJECT DISSEMINATION															

ISF:UTS

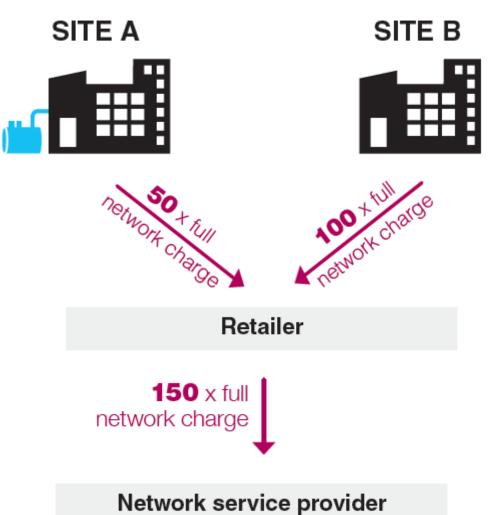
NETWORK CHARGES – WHAT HAPPENS NOW


NETWORK CHARGES - WHAT HAPPENS NOW

Current network charges for local energy

PHYSICAL ELECTRICITY FLOWS

.. but maintained he


MONETARY FLOWS WITH AND WITHOUT LGNC

MONETARY FLOWS

CURRENT NETWORK CHARGES

Uses 150 MWh Imports 50 MWh Generates 110 MWh Exports 10 MWh

Uses 100 MWh Imports 100 MWh

MONETARY FLOWS

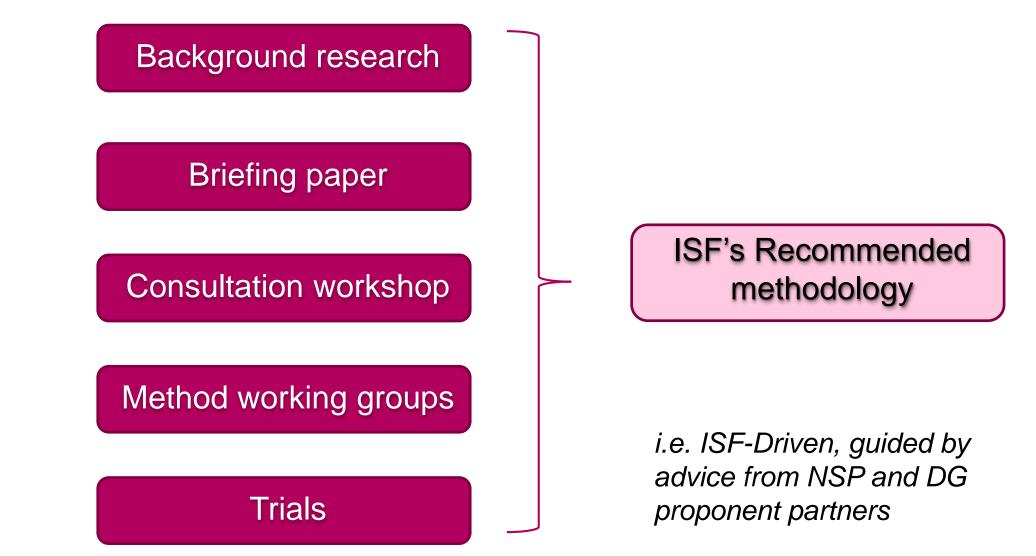
LOCAL NETWORK CHARGES

Local Generator Network Credit

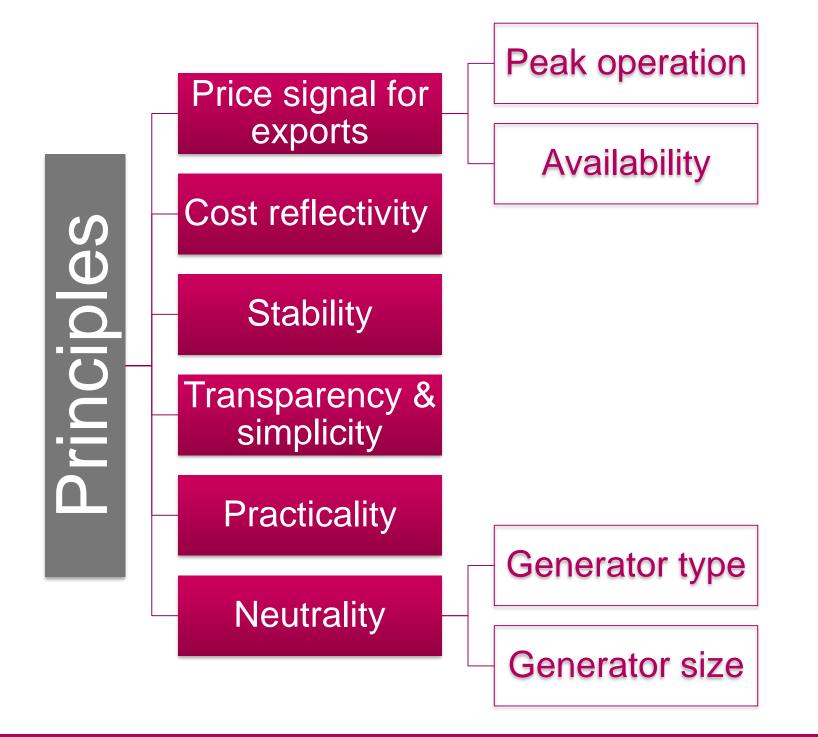
SITE A SITE B Uses 150 MWh Imports 50 MWh **Generates 110 MWh Exports 10 MWh** network charge letwork cree Retailer 150 x full 10 x local network charge Network service provider

ISF:UTS

www.isf.uts.edu.au


Uses 100 MWh

Imports 100 MWh

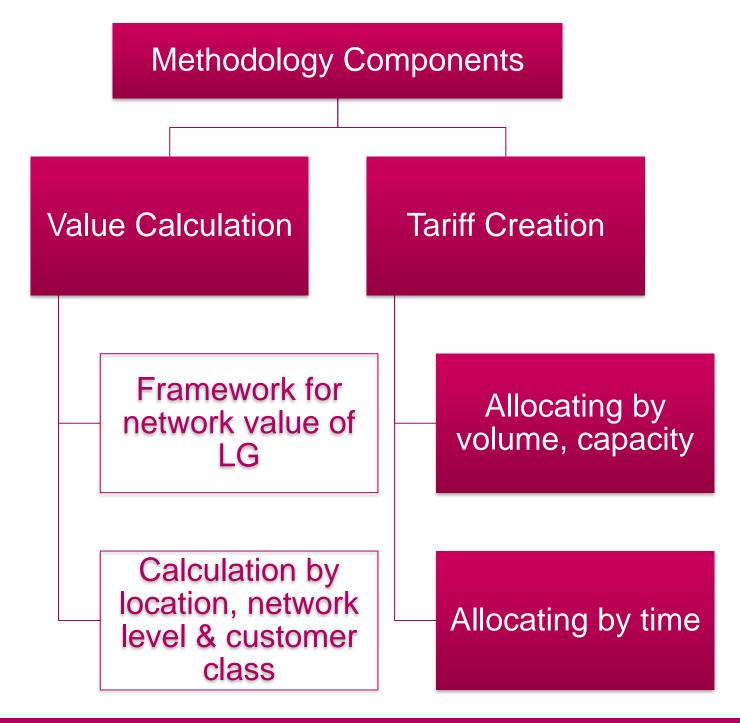

LNC CALCULATION METHODOLOGY

HOW WE'VE DEVELOPED IT

ISF:UTS

PRECEDENTS

METHODOLOGIES INVESTIGATED


Methodology	Value calculation	Location	Time	Payment structure [Additional values]	Operation	Availability	Cost Reflectivity	Stability	Transparency	Implementation	Neutrality
UK CDCM	Marginal Cost based on 500MW increments	By voltage level	Probabilistic: based on peak periods and estimated generation	Volumetric [Losses]	\checkmark	Х	√ X	\checkmark	√ X	\checkmark	√ X
Connecticut	Declining percentage of DUOS and TUOS	Generator and consumer in same distribution territory	Applies to exports not consumed by customers other sites within billing period	Volumetric	X	X	X	\checkmark	\checkmark	\checkmark	x
Minnesota	NPV of value of generator over its lifetime. Load and generation data for 12 months (hourly basis)	Assumed low voltage (LV) (Solar only)	All	Volumetric, [avoided generation, capacity, ancillary services and environmental benefits]	X	×	\checkmark	\checkmark	√ X	X	X
ActewAGL	Estimate avoided TUOS	Assume LV (Solar only)	All	Volumetric	Х	Х	Х	\checkmark	Х	\checkmark	Х
Ausnet	Unknown	Assume LV (Solar only)	Summer generation only	Volumetric	√ X	Х	?	\checkmark	Х	\checkmark	×
Reference service approach ¹	Lowest avoided cost	Very location specific, requires user to be identified			X	X	\checkmark	\checkmark	Х	X	√ X

1 Both Western Australia in the WA Wheeling Method and Transmission pricing guidelines include a methodology based on this approach

ISF:UTS

METHODOLOGY COMPONENTS

VALUE CALCULATION: LRMC

FRAMEWORK FOR NETWORK VALUE OF LOCAL GEN

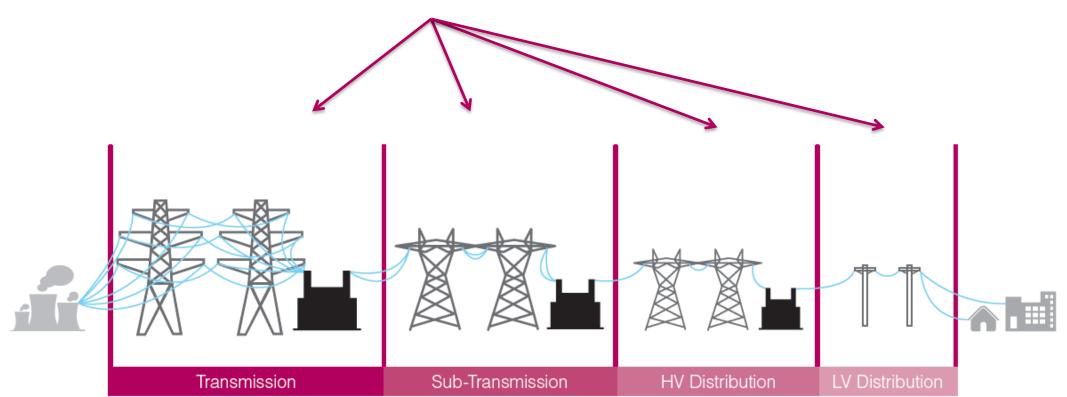
- Reference Service Approach: Cost a private wire to connect generator with demand, which can be used for network to offer 'prudent discount' on cost of services.
- LRMC of Network Services Approach: Quantify avoided costs, including:
 - Growth-related augmentation (capex)
 - Replacement costs (capex)

SFU

- Associated operating costs (opex)
- (All long term costs: 15-20+ years)

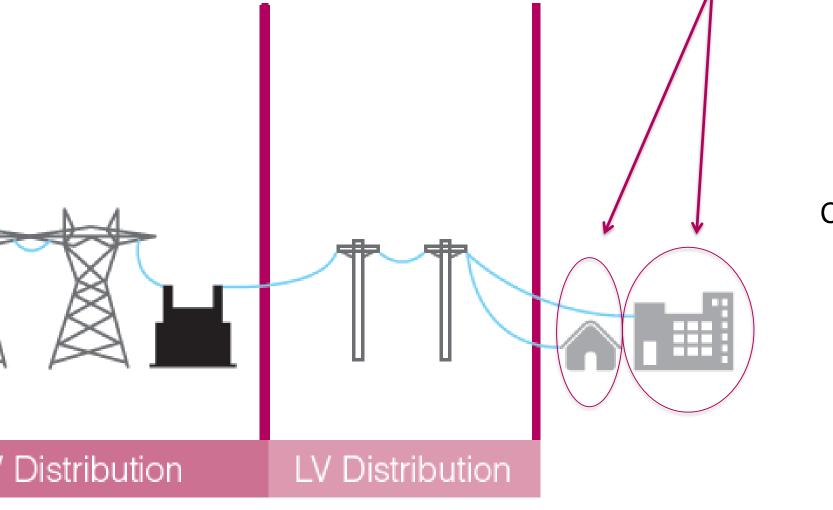
LRMC CALCULATION METHOD

- NSPs to apply same method they already apply for consumption tariffs
 - Pros: easy for NSPs to implement; potentially equitable; reflects cost-reflective network pricing reform process
 - Cons: if current LRMC calculation ignores replacement or opex, or takes short term (5-10yr) horizon, credit value may be too low



LRMC CALCULATION BY LOCATION, LEVEL, CLASS

• Locational only to the extent that Network Businesses use different pricing zones for consumption tariffs


LRMC CALCULATION BY LOCATION, <u>LEVEL</u>, CLASS

Level of Generator Connection

LRMC CALCULATION BY LOCATION, LEVEL, <u>CLASS</u>

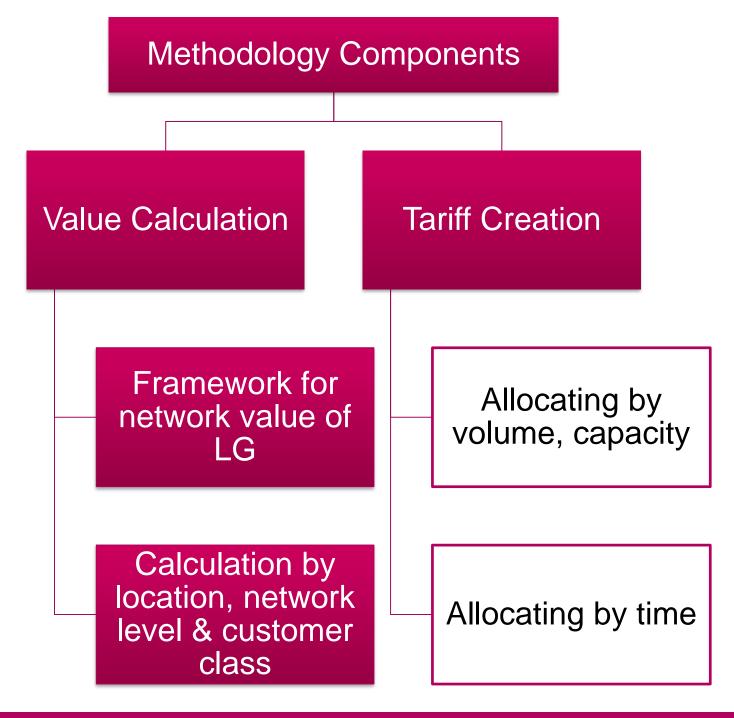
Customer Class

LRMC CALCULATION: THE END RESULT

Table 3: Sample table for LRMC by network level & customer class (dummy data)

LRMC (\$/kVA/yr)	Residential customers	Small commercial customers	Large commercial customers
Transmission	50	50	50
Subtransmission	24	24	25
HV Substation (Zone Substation)	33	33	27
HV Feeder	60	69	57
Distribution Sub	57	48	33
LV	104	93	0
TOTAL	328	307	192

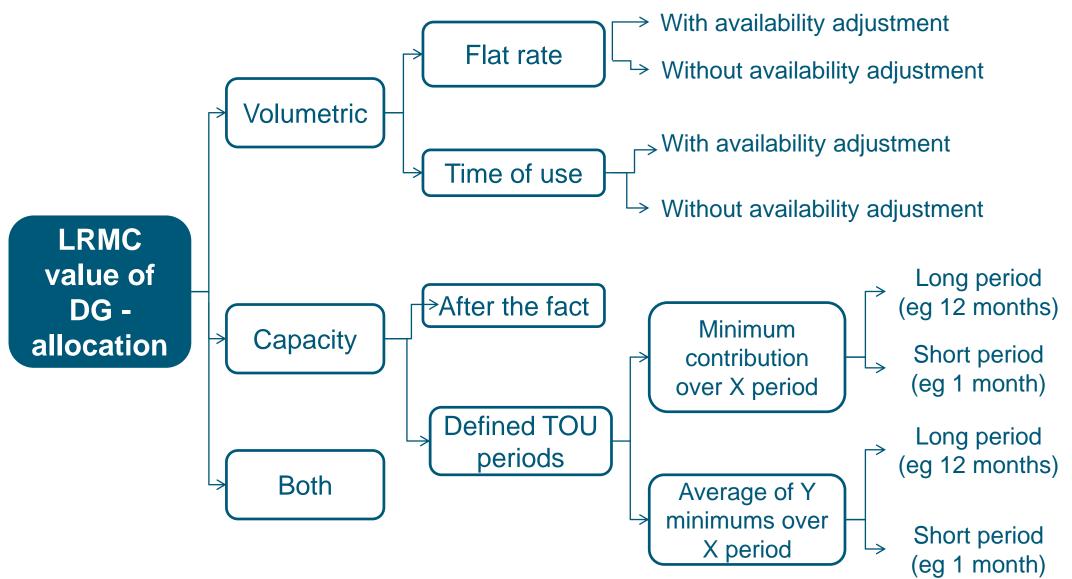
LRMC CALCULATION BY LOCATION, LEVEL, CLASS


ISF:UTS

• Calculate by same location, level, class as NSPs do now then allocate levels by:

Table 4 Components of LRMC forming LG local network credit, according to the level of generator connection location (credited components marked with a tick)

	Cost Category									
Generator Situation	Transmission (TransGrid)	Sub-transmission line	HV Substation	HV System	LV Substation	LV System	System-Fixed	Non-System fixed		
Co-Located (Same site)	1	1	1	1	1	1	×	×		
LV System Connected	1	1	1	1	1	×	×	×		
LV Substation Connected	1	1	1	1	×	×	×	X		
HV System Connected	1	1	1	x	×	×	×	×		
HV Substation Connected	1	1	×	×	×	×	×	×		
Sub-Transmission Connected	1	×	×	×	×	×	×	×		



TARIFF CALCULATION CONSIDERATIONS

VOLUME OR CAPACITY: DECISIONS

LGNC TARIFFS INCLUDED IN TRIALS

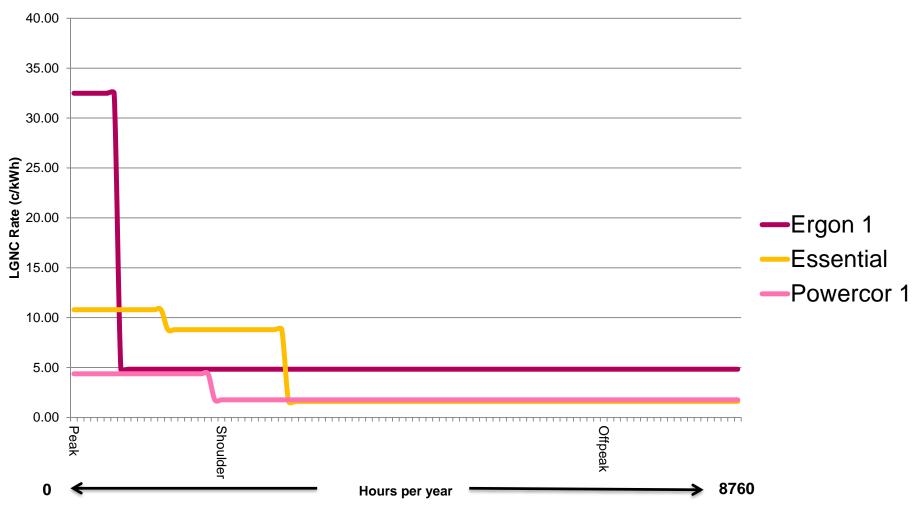
- 1. Volumetric only (Method 1)
- 2. Combined volume-capacity (Method 2)

BECAUSE:

- International precedents = volumetric
- Volume-capacity more aligned with CRNP direction
- Allows comparison between volumetric and volumecapacity

WHAT THE TRIALS ARE TELLING US – PRELIMINARY LNC VALUES

virtual THE TRIA V	LS		WINTON - I Tech Network Retailer Model	Geoth Ergon	OF GRID ermal Energy Energy BYRON Tech Network	PV Essential	
	MOIRA/SW	AN HILL			Retailer	Origin Energy	
	Tech	PV		-	Model	Council 1 \rightarrow 1	
1	Network	Powercor					
1	Retailer	AGL					
1	Model	1 → Many			VILLOUGH	BY	
				7 1	ech	Cogen + PV	
WANI	NON WATE	R		M	letwork	Ausgrid	
Tech	Wind	d 🔰		F	Retailer	Energy Australia	
Netwo	ork Pow	ercor	7	Ν	lodel	Council 1 → 1	
Retai	iler AGL						
Mode	el 1→	1&1→2	and the second second				
ISF:UTS						www.isf.uts.	e


TRIAL RESULTS – CAVEATS

- These results are preliminary, as our trial partners have not had time to review thoroughly. We expect final results at the end of April.
- Ergon, Powercor and Essential have made a very valuable contribution to these results and the development of the LNC methodology, **but do not necessarily endorse** the methodology, or the proposed rule change
- LNC values will vary considerably by NSP, geographic location and network level, and these results are specific to the situation of each trial.
- The analysis doesn't factor in the impact to local energy flows in terms of capacity, voltage and protection, whether adverse or beneficial.

LGNC VALUES ACROSS THE TRIALS – VOLUMETRIC ONLY METHOD (PRELIMINARY RESULTS)

LGNC Rates for connection on LV Line

LNC VALUES ACROSS THE TRIALS – VOLUMETRIC ONLY METHOD (PRELIMINARY RESULTS)

	ERGON		POWERCOR			ESSENTIAL			
Connection level	LVL	LVD	ZS	LVL	LVD	ZS	LVL	LVD	ZS
	c/kWh		c/kWh			c/kWh			
Peak	32.5	28.3	15.4	4.4	4.3	3.0	10.8	8.5	6.5
Shoulder							8.8	6.9	5.3
Off-peak	4.8	4.2	2.3	1.8	1.7	1.2	1.6	1.3	1.0

LNC VALUES ACROSS THE TRIALS – COMBINED METHOD (PRELIMINARY RESULTS)

	ERGON		POWERCOR			ESSENTIAL			
Connection level	LVL	LVD	ΗV	LVL	LVD	ΗV	LVL	LVD	ΗV
VOLUMETRIC PORTION	c/kWh		c/kWh			c/kWh			
Peak	16.2	14.2	7.7	5.6	5.5	3.8	4.9	3.8	2.9
Shoulder							4.0	3.1	2.4
Off-Peak	2.4	2.1	1.1	0.1	0.1	0.1	0.7	0.6	0.4
CAPACITY PAYMENT	\$/kW/day		\$/kW/day		\$/kW/day				
Based on minimum generation in defined period	3.35	2.92	1.59	0.46	0.45	0.31	0.71	0.55	0.42

LNC OUTCOMES FOR THE TRIALS (PRELIMINARY RESULTS)

	Winton		Wannon		Byron		
Network	Ergon		Powercor		Essential		
Technology type	Geothermal		Wind		Solar		
Size	310 kW		800 kW		150 kW		
Connection level	High Voltage		LV Distribution Tx		LV Line		
	Method 1	Method 2	Method 1	Method 2	Method 1	Method 2	
Annual value (trial)	\$65,700	\$70,100	\$46,700	\$23,000	\$13,600	\$6,100	
Value per kW (100% CF)	\$286 \$286		\$192	\$192	\$469	\$469	
Value per kW (trial)	\$212 \$226		\$151	\$74	\$91	\$41	
Notional availability	74%	79%	30%	15%	19%	9%	

WHAT THE TRIALS ARE TELLING US – PRELIMINARY SCENARIO RESULTS

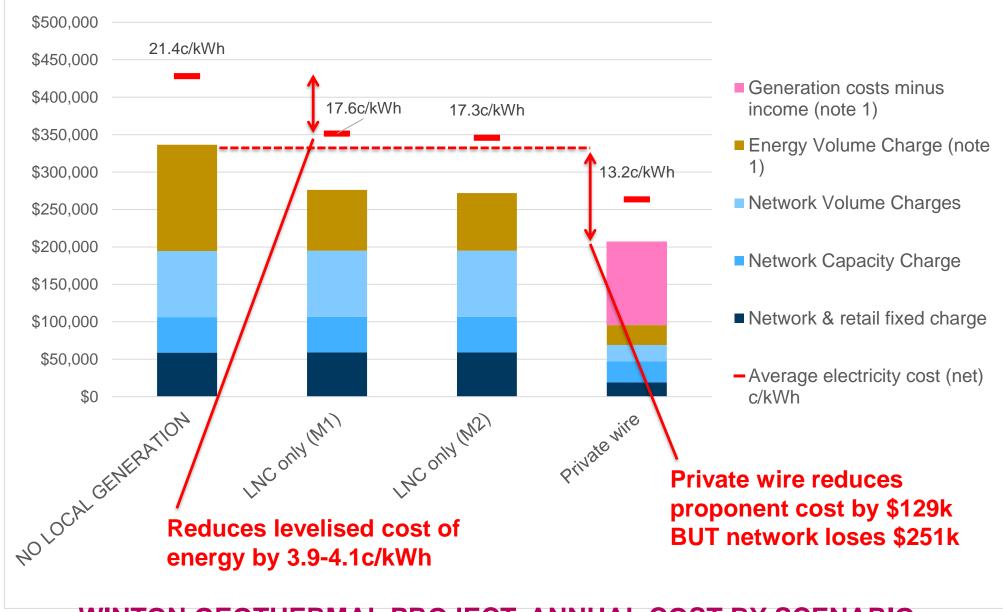
BYRON SHIRE COUNCIL TRIAL: PRELIMINARY RESULTS

Private wire repayments

- Generation costs minus income (note 1)
- Energy Volume Charge (note 1)
- Network Volume Charges
- Network Capacity Charge
- Network & retail fixed charge
- Average electricity cost (net) c/kWh

Private Wire would reduce proponent cost by \$20k BUT network loses \$30k.

ISF:UTS

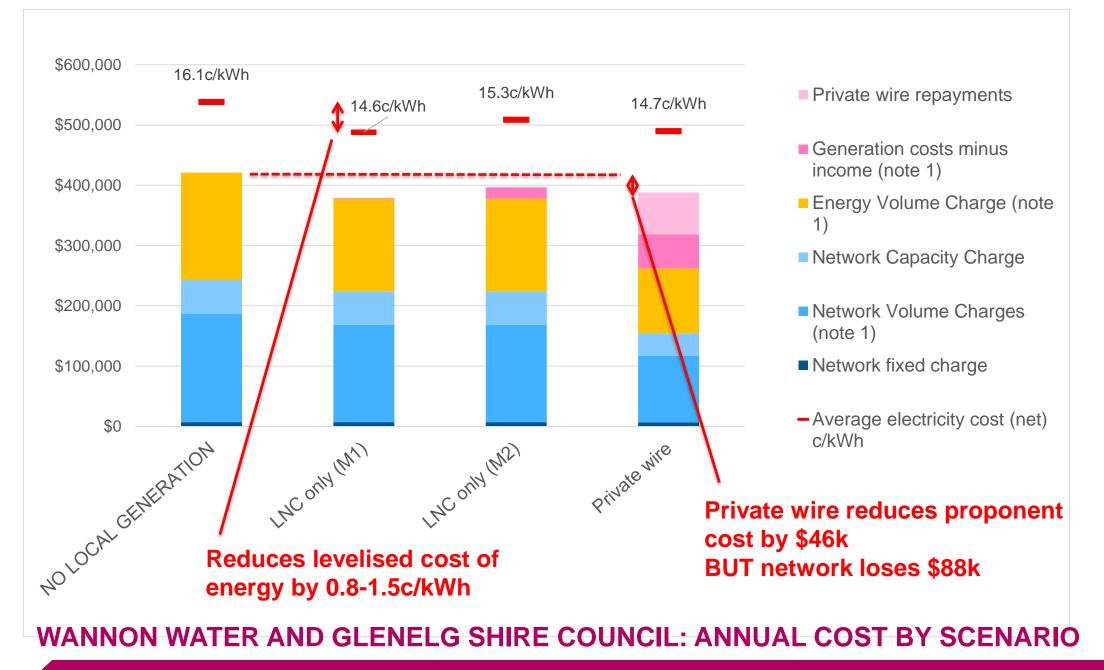

SCENARIO OUTCOMES – BYRON SHIRE COUNCIL

	Current market	LNC only (M1)	LNC only (M2)	Private wire
Customer – annual savings compared to BAU	\$2,600	\$16,200	\$8,700	\$22,500
LGNC value	-	-\$13,600	-\$6,100	-
Network business – impact on local charges*	-\$2,700	-\$16,300	-\$8,800	-\$29,400

* BAU network charges ~ \$115,000

WINTON SHIRE COUNCIL TRIAL: PRELIMINARY RESULTS

WINTON GEOTHERMAL PROJECT: ANNUAL COST BY SCENARIO


SCENARIO OUTCOMES – WINTON SHIRE COUNCIL

	Current market	LNC only (M1)	LNC only (M2)	Private wire
Customer – annual savings compared to BAU	-\$5,500	\$60,300	\$64,600	\$129,300
LGNC value	-	-\$65,700	-\$70,100	-
Network business impact (local charges) *	\$400	-\$65,400	-\$69,700	-125,485 (charges only) -\$251,200 (inc CSO effect)

* BAU network charges ~ \$195,000

WANNON WATER TRIAL: PRELIMINARY RESULTS

ISF:UTS

SCENARIO OUTCOMES – WANNON WATER TRIAL

	Current market	LNC only (M1)	LNC only (M2)	Private wire
Customer – annual savings compared to BAU	\$1,700	\$48,300	\$24,600	\$46,600
LGNC value	-	-\$46,700	-\$23,000	-
Network business – impact on local charges*	-\$18,500	-\$65,200	-\$41,500	-\$88,500

* BAU network charges ~ \$224,000

PRELIMINARY CONCLUSIONS

PRELIMINARY CONCLUSIONS

- Incentives to duplicate infrastructure (private wires) are real.
- Private wires lead to worse financial outcome for both the NSP and all consumers.
- Absence of LGNC (network export credit) impedes efficient investment and operational decisions by DG proponents.
- LGNCs tentatively appear to make modest but meaningful contribution to:
 - Dispatchable generator operational strategy
 - DG proponent initial investment decision

PRELIMINARY CONCLUSIONS

- End result of offering LGNC would be to keep kWh on the grid (maintain utilisation in increasingly locally derived supply).
- The volume-capacity method (#2) benefits variable DG less than volumetric only method (#1) due to current 'deterministic' application.
- Local Electricity Trading would be a voluntary offering for retailers (no further Rule Change), potentially unlocked by margin granted by LGNC.

THANK YOU!

Project website

http://bit.do/Local-Energy

