MANAGING THE COSTS AND RISKS OF NEW GENERATION

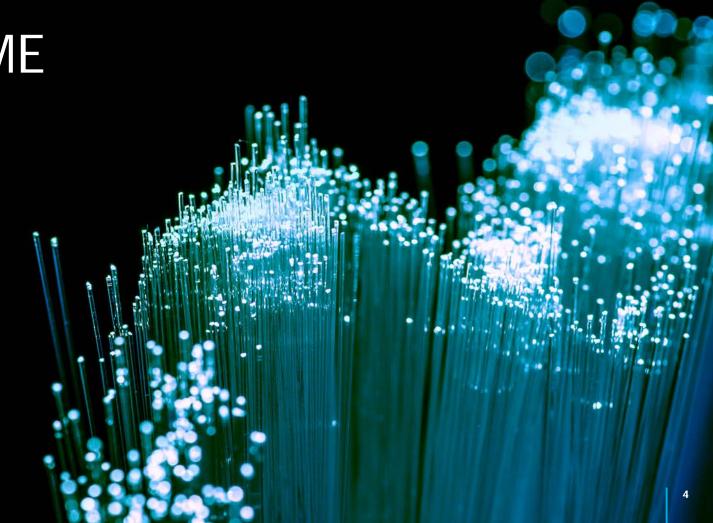
COORDINATION OF GENERATION AND TRANSMISSION INVESTMENT

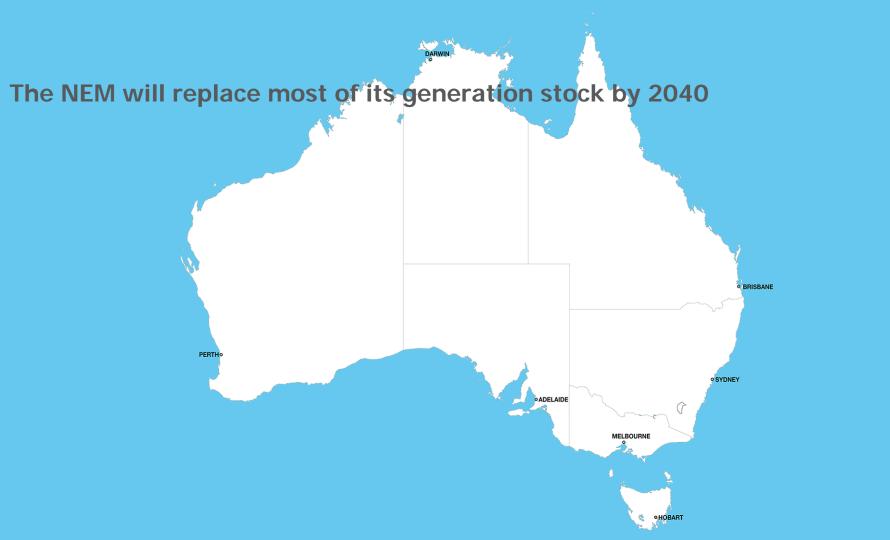
PUBLIC WORKSHOP 18 OCTOBER 2019

1. Welcome

- 2. Need for reform
- 3. Overview of proposal
- 4. How this works in practice
- 5. Impact analysis
- 6. Need for renewable energy zones
- 7. Overview of renewable energy zones
- 8. Next steps

What the review is tasked with




Charging reform

We are prioritising access reform based on stakeholder feedback that it is most urgent

WELCOME

NEED FOR REFORM

Need for access reform

Generators, consumers and transmission businesses are facing worsening and related issues as the electricity market transitions. Access reform is needed now because the existing approach is no longer sustainable

OVERVIEW OF PROPOSAL

Our proposal for access reform – adapted for stakeholder feedback

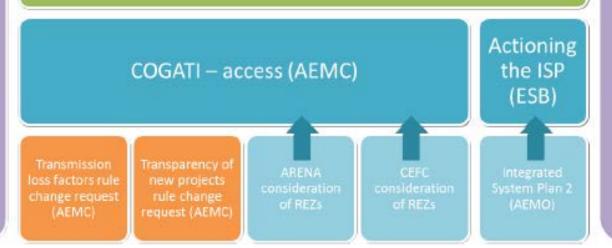
Wholesale electricity pricing

Generators and storage receive a local price that better **reflects the marginal cost** of supplying electricity at their location in the network

2. Financial risk management

Generators and storage are better able to **manage the risks of congestion** by purchasing a financial transmission right

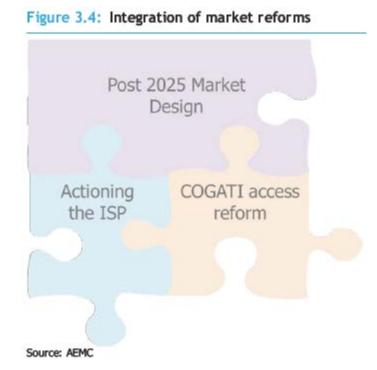
3. Transmission planning and operation


Transmission planning is **informed** by the purchase of transmission hedges, with the cost of transmission investment no longer solely recovered directly from consumers

Based on stakeholder feedback, we are pursuing only the first two elements of the proposed access model

Interaction with other key reforms

Consistent with distribution network reforms Grid of the future (AEMC) Open energy networks (AEMO/ENA)


Context for implementation dates

Wholesale demand response mechanism rule change request (AEMC) Global settlement implementation (AEMO)

Five minute settlement implementation (AEMO)

Integration with other reforms

- Actioning the Integrated System Plan: The ESB is working to action the ISP, which goes hand in hand with our proposed reforms:
 - ISP and related processes will establish the amount of financial transmission rights available for purchase
 - Subsequent sale of those financial transmission rights provides better information for transmission planning
- **Post 2025 Market Design**: The ESB is undertaking a project for COAG Energy Council on a long-term fit for purpose market framework to support reliability.
 - The proposed reforms also allow sufficient flexibility for different future market designs to be explored under the Post 2025 Market Design work.

• The AEMC is working closely with the ESB on these projects.

Algebraic representation of the access model

- Current market settlement
 - Revenue = RRP x physical dispatch
- Current effective market settlement
 - Revenue = LMP x physical dispatch + (RRP LMP) x physical dispatch
- Proposal under reform
 - Revenue = LMP x physical dispatch + (Locational price 1 Locational price 2) x FTR quantity
- Solves two problems with current market
 - Market participants now settled at LMP, not RRP, a more efficient price signal
 - Market participants' spot market revenue is partially decoupled from physical dispatch, market participants able to manage the risk of congestion by acquiring FTRs. When congestion arises, this creates locational price differences and resulting FTR payments.

Dynamic regional pricing and financial transmission rights

Under the proposed model, large-scale generators and storage would receive a **locational marginal price** that more accurately reflects the cost of supplying electricity at their location on the network, accounting for both transmission congestion and losses.

Retailers would continue to pay a regional price.

Settlement residues accrue as a result of the difference between the price paid to generators at locational marginal prices, and the price charged to load at regional prices

Participants will be able to purchase **financial transmission rights** (FTRs).

These products will assist participants in managing the risks associated with network congestion and losses, since FTRs will pay out to participants the difference between local prices and the regional price.

The funds for the FTR payouts come from **settlement residues**.

We have developed a proposed access model containing detail of dynamic regional pricing and financial transmission rights

DRP and FTRs well established overseas

"Locational marginal pricing (LMP) is the electricity spot pricing model that serves as the benchmark for market design – the textbook ideal that should be the target for policy makers."

International Energy Agency, 2007

"Financial transmission rights are essential ingredients of efficient markets in wholesale electricity systems"

Prof. Bill Hogan, Harvard University, 2013

"Nodal pricing is crucial to ensuring that accurate economic evaluations of engineering decisions can be made."

Singapore Energy Market Authority, 2010

"LMP – should encourage short-term efficiency in the provision of wholesale energy and long-term efficiency by locating generation, demand response and/or transmission at the proper locations and times."

US Federal Energy Regulatory Commission, 2002

"Operating alongside the electricity hedge market, the FTR market helps to promote retail competition by encouraging retailers to compete for customers on a nationwide basis, as opposed to focusing primarily on regions close to where they own generation assets."

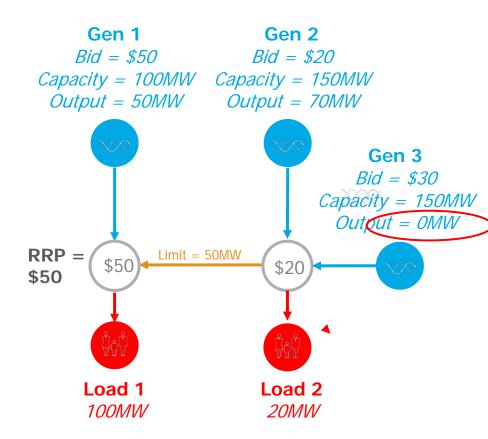
NZ Electricity Authority website

"The purpose of FTRs to serve as a congestion hedge has been well established."

US Federal Energy Regulatory Commission (FERC), 2017

Issue	Proposed Design Choice
What participants will face the local price?	 Large-scale (scheduled) generators and storage would be paid their local price, reflecting the cost of supply at their specific location Retailers and so customers would still pay the regional price
What is the regional price?	 Ideally, it would be calculated as the volume weighted average of local prices.
How will participants manage the risk of congestion and losses?	 Large-scale (scheduled) generators and storage will be able to purchase financial transmission rights. These will provide a financial payout when the local price differs from the regional price due to congestion and/or losses. These rights will only pay out a positive amount.

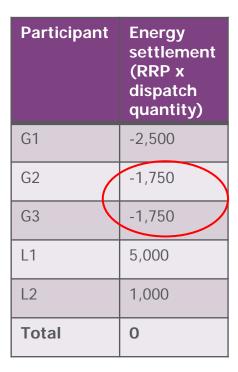
Issue	Proposed Design Choice
What different types of rights can be purchased?	 Payout between: local price & regional price; and regional price & other regional price. Payout can be continuous or time of use.
How long can they be purchased for?	 Quarterly periods, up to 4 years in advance.
What will the local prices reflect, and so what risks will the rights cover?	 All constraints in NEMDE. Dynamically calculated loss factors.

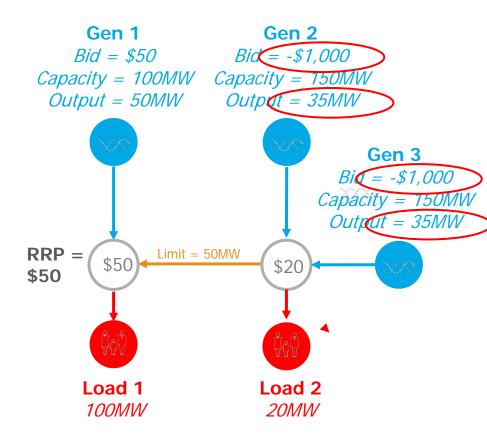

Issue	Proposed Design Choice
How can parties purchase the rights?	 AEMO would run an auction – with input from TNSPs – to determine how many rights can be sold. Large-scale (scheduled) generators and storage would bid for these rights in an auction.
Who can purchase the rights?	 Any physical player
How transparent would the process be?	 AEMO would maintain a register of rights sold, and the sale price.

Issue	Proposed Design Choice
How are issues of market power dealt with?	 We do not envisage that market power will be increased. However, if we do need a market power mitigate measure, then a cap on a generator's offer would be applied if it was deemed to be pivotal.
Would there be grandfathering?	 There would be a transitional period where incumbent generators would be granted, rather than pay for, rights
When would it be implemented?	• 2022

HOW THIS WORKS IN PRACTICE

Current arrangements, with congestion


Participant	Energy settlement (RRP x dispatch quantity)
G1	-2,500
G2	-3,500
G3	0
L1	5,000
L2	1,000
Total	0



Excludes effects of losses. Generators are scheduled, load is unscheduled.

20

Current arrangements, with race to floor bidding

Excludes effects of losses.21Generators are scheduled, load is unscheduled.

Common misconception addressed

Common misconception addressed:

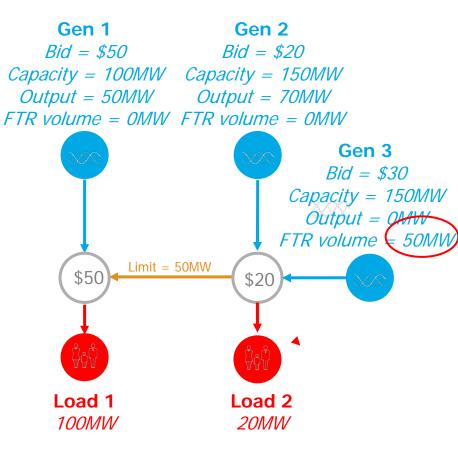
"Disorderly bidding" is a generic term for any type of bidding behaviour which is inconsistent with long term interest of consumers.

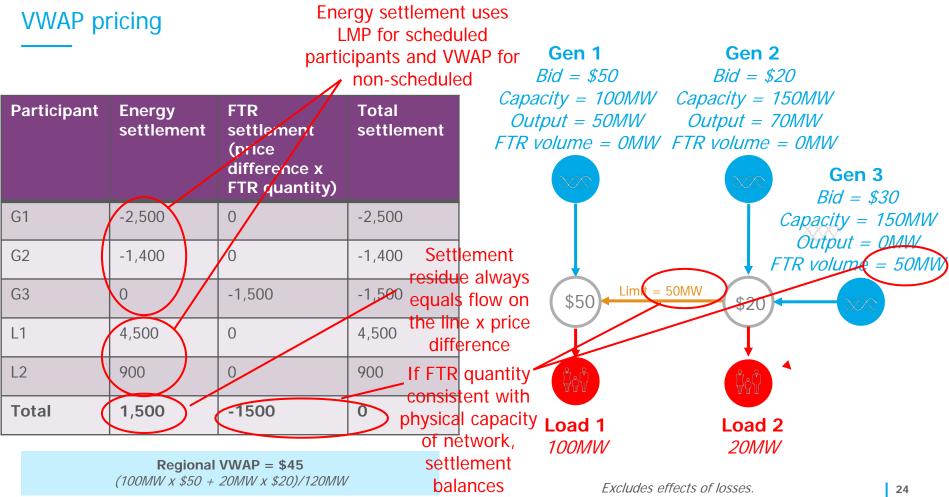
Incentives to disorderly bid arise due to, *for example*:

- Regional prices not equaling local prices
- 30 minute prices not equaling 5 minute prices.

These are 2 separate problems with 2 separate solutions. 5 minute settlement is intended to address the latter, COGATI the former.

5 minute settlement was never a solution to the former, or vice versa.

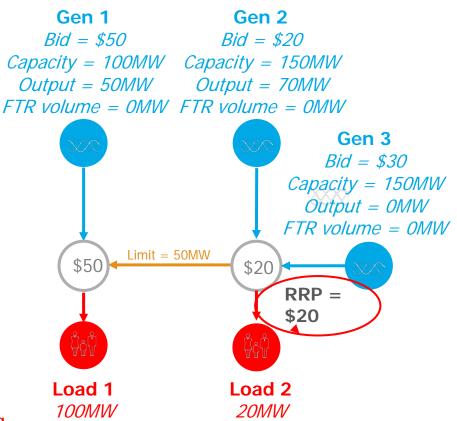

Common misconception addressed:


While it is true that dispatch inefficiencies arising from race to the floor bidding behaviour will be minimal if all generators behind the constraint have the same short run costs (eg, zero), this ignores the effect of batteries.

Batteries do not have a short run cost of zero, and so existing incentives will result in inefficient dispatch/charging of batteries.

Arrangements under proposed access model

Participant (Energy settlement (LMP x) dispatch quantity)	FTR settlement (price difference x FTR quantity)	Total settlement
G1	-2,500	0	-2,500
G2	-1,400	0	-1,400
G3	0	-1,500	-1,500
L1	What non-scheduled participants pay explained in subsequent slide		
L2			

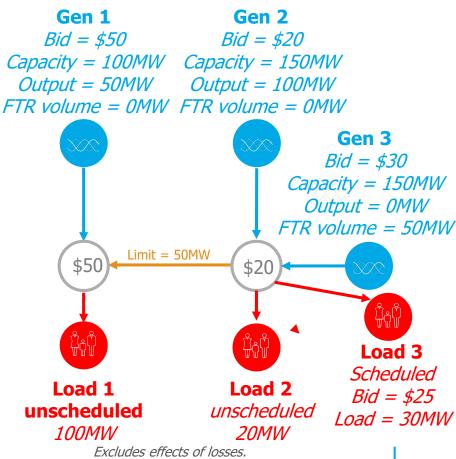


Generators are scheduled, load is unscheduled.

Why ideally do we change from the RRP to VWAP?

Participant	Energy settlement	FTR settlement (price difference x FTR quantity)	Total settlement
G1	-2,500	0	-2,500
G2	-1,400	0	-1,400
G3	0	0	0
L1	2,000	0	2,000
L2	400	0	400
Total	-1,500	0	-1,500

If we use regional reference node pricing then we don't have enough income to settlement energy, let along FTRs



Excludes effects of losses. 25 *Generators are scheduled, load is unscheduled.*

VWAP pricing for non-scheduled participants; LMP pricing for scheduled participants

Participant	Energy settlement (LMP x dispatch quantity)	FTR settlement (price difference x FTR quantity)	Total settlement
G1	-2,500	0	-2,500
G2	-2,000	0	-2,000
G3	0	-1,500	-1,500
L1	4,500	0	4,500
L2	900	0	900
L3	30 x 20 =600	0	600
Total	1,500	-1500	0
Regional VWAP = \$45			

(100MW x \$50 + 20MW x \$20)/120MW

Slide updated 28/10/2019 to correct mathematical errors

Link to commodity market

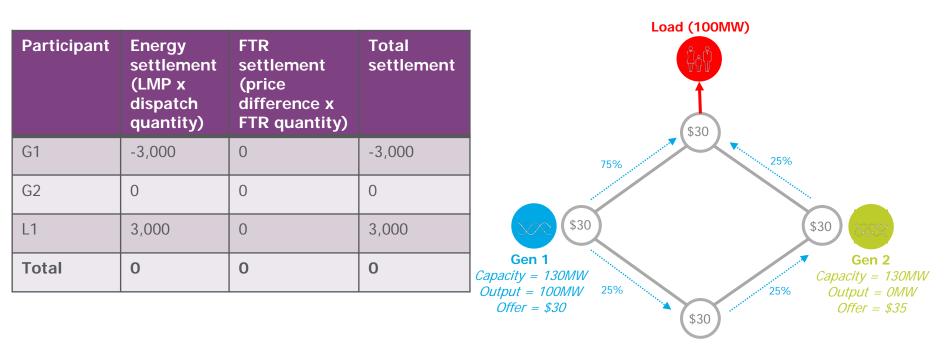
Revenue from spot market Revenue from FTR Revenue from swap contract Short run cost	· · · ·		[1] [2] [3] [4]
Short run profit	+ FTR quantity] – [4] tity x (LMP – SRMC) y x (VWAP – LMP) ity x (Strike price – VWAP)	
No constraints VWAP = LMP Dispatch quantity can equal contract quantity Short run profit = Swap quantity x (Strike	J.	Constraints bind Dispatch quantity = 0 (due to constraint fFTR quantity = contract quantity, the short run profit = Contract quantity is But we know that SRMC \geq LMP (or explicitly the stress of the stress o	then: x (Strike price – LMP) else dispatch quantity RMC), so short run profit

Common misconception addressed

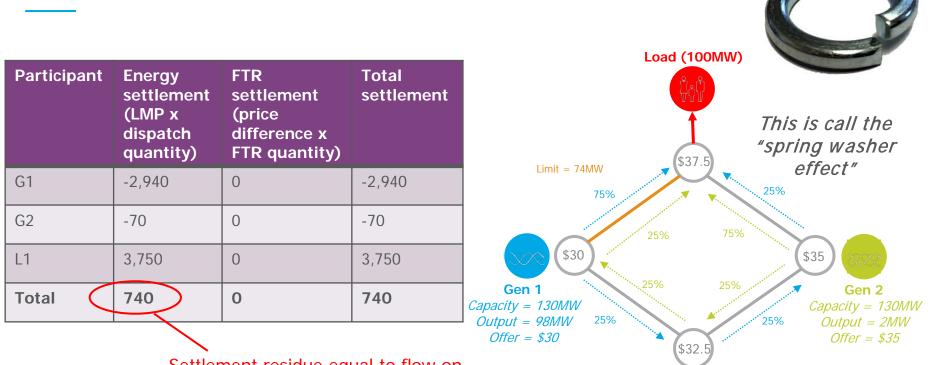
Common misconception addressed:

LMP pricing does not introduce a new risk to the sector.

Instead, it makes the existing risk of congestion, which manifests in lower dispatch quantities, more transparent.


FTRs enable that risk to be hedged.

Common misconception addressed: Introduction of the reforms is likely to increase not decrease contract market liquidity.

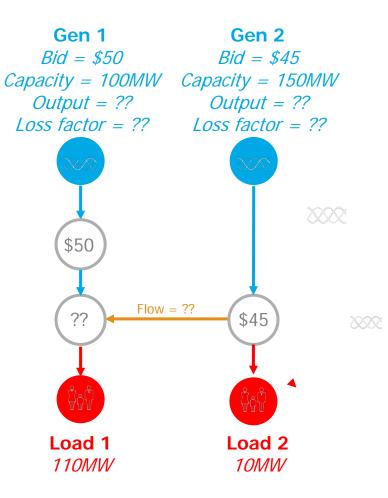

Currently, generator's that have a contract risk being "short" as a consequence of transmission constraints. They reduce their contract quantity accordingly, to reduce the downside risk.

Inter- and intra-regional FTRs provide generators the ability to manage this risk, and hence offer more contracts.

Dynamic regional pricing – meshed network without constraints

Assumes all lines have equal impedance. Excludes effects of losses.

Settlement residue equal to flow on each of the lines, multiplied the price differences between the nodes


Dynamic regional pricing – meshed network with constraints

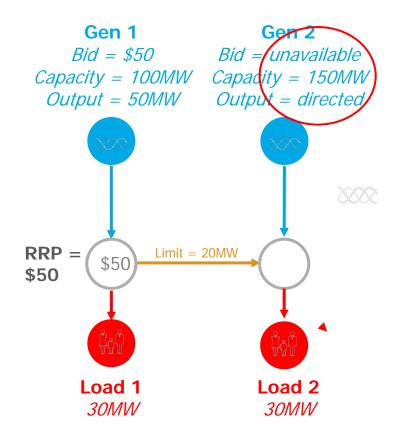
Assumes all lines have equal impedance. Excludes effects of losses.

Marginal loss factors and dispatch efficiency

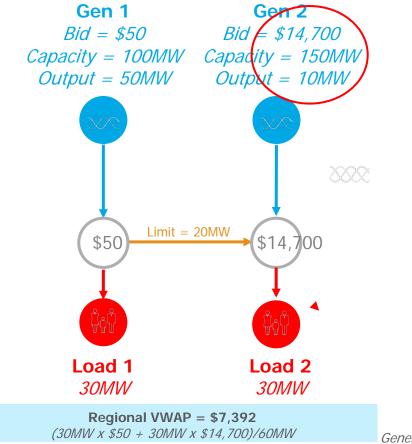
Participant	Static MLF	Loss adjusted bid	Output
G1	0.9	50 / 0.9 = 55.6	0
G2	0.85	45 / 0.85 = 52.9	120
LMP at load 1 = \$52.9, flow across orange line is 110MW			

Participant	Actual MLF	Loss adjusted bid	Output
G1	0.9	50 / 0.9 = 55.6	100
G2	0.8	45 / 0.8 = 56.3	20
LMP at load 1 = \$56.3, flow across orange line is 10MW			

DRP and dynamic marginal loss factors

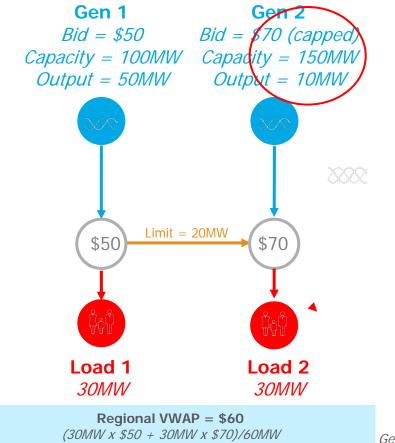

Participant	Energy settlement (LMP x dispatch quantity)	FTR settlement (price difference x FTR quantity)	Total settlement	
G1	-5,000	0	-5,000	
G2	-900	0	-900	
L1	6,084	0	6,084	
L2	553	0	553	\$
Total	738	0	738	4

Gen 1 Gen 2 Bid = \$50Bid = \$45Capacity = 100MW Capacity = 150MW Output = 100MWOutput = 20MW Loss factor = 0.9 Loss factor = 0.8\$50 Flow = 100MWFlow = 10MW\$56.3 \$45 556.3 =5/0.8 Load 1 Load 2 110MW 10MW


Regional VWAP = \$55.4 (110MW x \$56.3 + 10MW x \$45)/120MW Reflects MLFs in local prices at unscheduled participant nodes

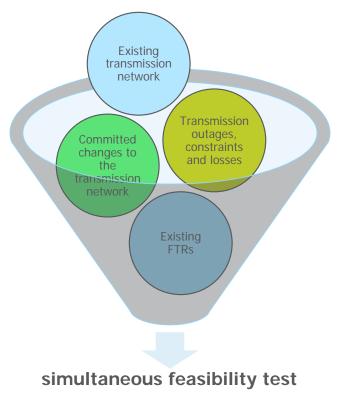
Generators are scheduled, load is unscheduled

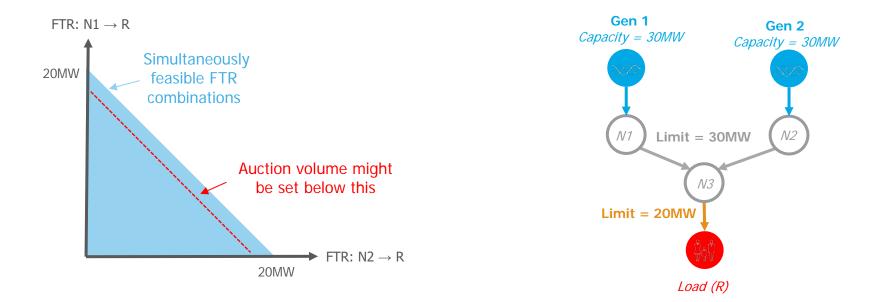
Market power in a load pocket – current arrangements


Market power in a load pocket – dynamic regional pricing

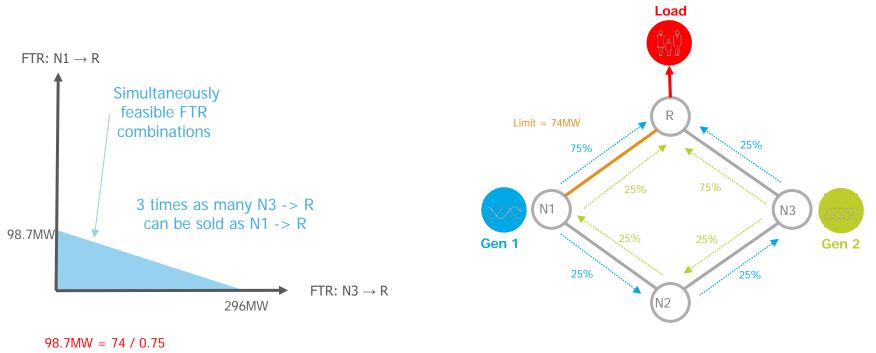
Excludes effects of losses Generators are scheduled, load is unscheduled

34

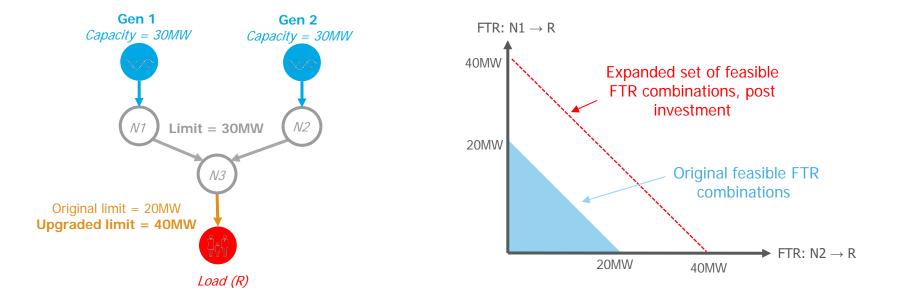

Market power in a load pocket – under dynamic regional pricing, w bid cap


Excludes effects of losses Generators are scheduled, load is unscheduled

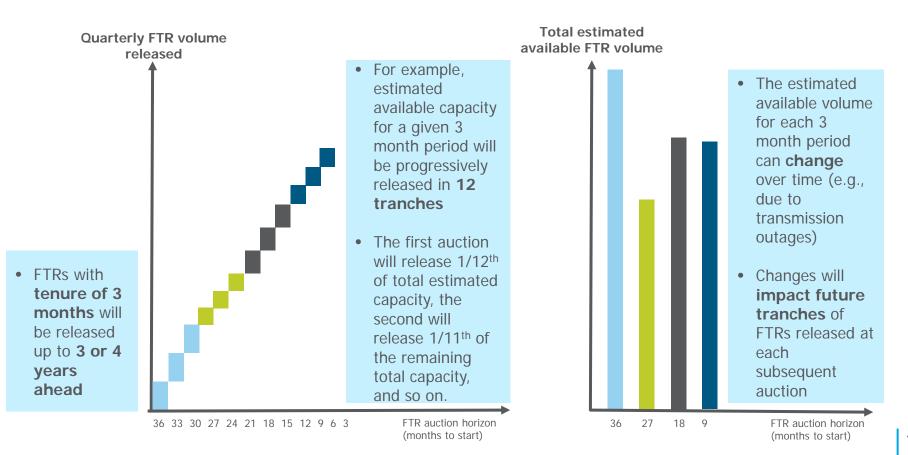
35


FTR auctions – simultaneous feasibility auction

Simultaneous feasibility – simple example



Simultaneous feasibility – meshed network example



296MW = 74 / 0.25

Impact of network investment

Progressive release of FTR capacity

FTR auctions – types of products

FTRs would be **options**, that only ever result in a positive payment. **Swaps** – that can result in a liability – would not be offered initially. They could be introduced later if valued by market participants.

FTRs would allow market participants to hedge price differences between **any local price and any regional price** and between **any two regional prices**.

FTRs would be both **continuous hedges** (active at all times of the day) and **time of use hedges** (active only during specific pre-defined time periods).

Product choice aims to achieve a balance between **complexity** and matching **market** participants' hedging requirements

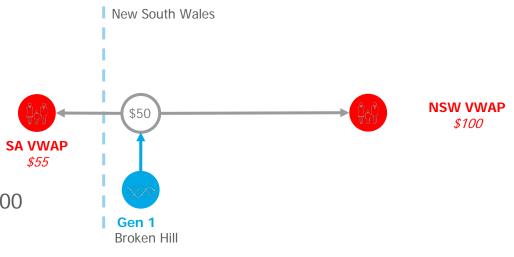
FTR options and swaps

Regional VWAP = \$60 (30MW x \$50 + 30MW x \$70)/60MW

FTR settlement (option)		
Generator 2	= max(0,(VWAP- LMP)) x FTR volume	
	= max(0, -10) x 20MW	
	= \$0	
FTR settlement (swap)		
Generator 2	= (VWAP - LMP) x FTR volume	
Generator 2	= (VWAP - LMP) x FTR volume = -20 x 10MW	

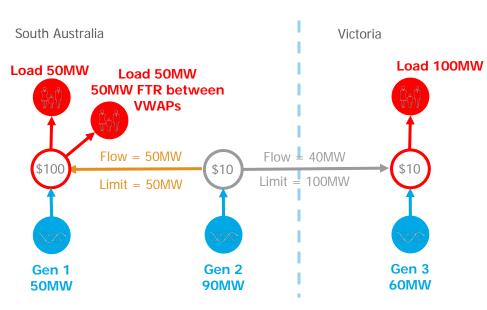
Gen 1 Gen 2 *Bid* = \$50 *Bid* = *\$70* Capacity = 100MW Capacity = 150MW *Output = 50MW Output = 10MW* FTR = 20MWLimit = 20MW\$50 \$70 Load 1 Load 2 30MW 30MW

FTR coverage – any local price to any regional price


- Generator 1 has:
 - 100MW FTR between its local price and the SA VWAP
 - 100MW swap settled against the SA VWAP, at a strike price of \$60.
- It generates 100MW

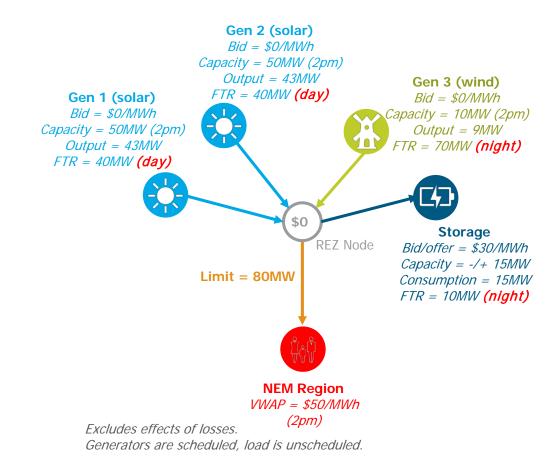
```
Spot energy settlement = 50 \times 100 = 5,000
```

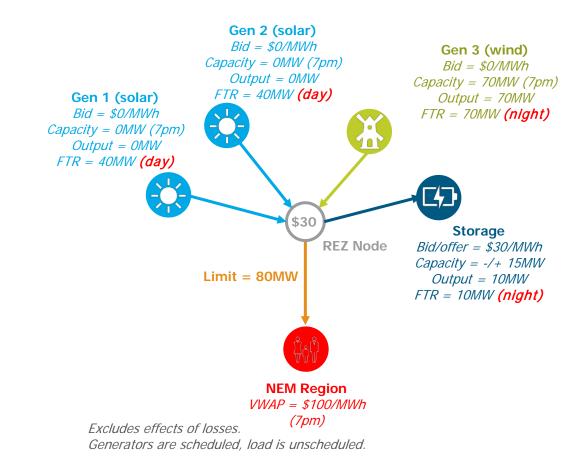
```
FTR settlement = (55 - 50) \times 100 = 500
```


```
Contract settlement = (60 - 55) \times 100 = 500
```

```
Total settlement = 6,000 (which is equal to 100 \times 60)
```


FTR coverage - any two regional prices


Participant	Energy settlement (LMP x dispatch quantity)	FTR settlement (price difference x FTR quantity)	Total settlement
G1	-5,000	0	-5,000
G2	-900	0	-900
G3	-600	0	-600
Load SA1	5,000	0	5,000
Load SA2	5,000	-4,500	500
Load Vic	1,000	0	1,000
Total	4,500	-4,500	0


Excludes effects of losses.

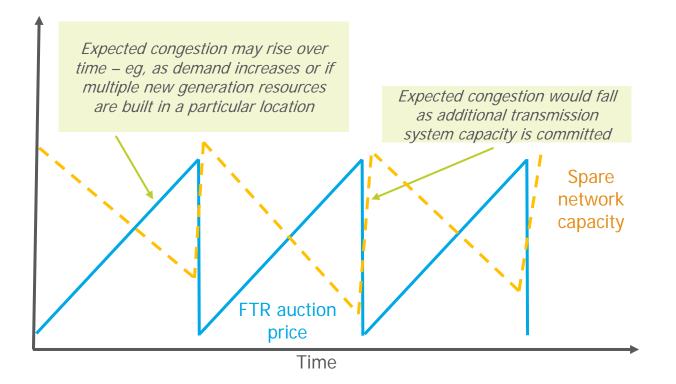
Generators are scheduled, load is unscheduled.

Use of time-of-use FTRs in a REZ (day-time, 2pm)

Use of time-of-use FTRs in a REZ (night-time, 7pm)

Time-of-use FTR settlement

2pm LMP = \$0 VWAP = \$50


LMP = \$30 VWAP = \$100

Participant	Dispatch	Spot revenue	Day-time FTR volume	FTR revenue
Gen 1 (solar)	43MW	\$0	40MW	-\$2,000
Gen 2 (solar)	43MW	\$0	40MW	-\$2,000
Gen 3 (wind)	9MW	\$0	OMW	\$0
Storage	-15MW (charging)	\$0 (payment)	OMW	\$0
Participant	Dispatch	Spot revenue	Night-time FTR volume	FTR revenue
Participant Gen 1 (solar)	Dispatch OMW	Spot revenue \$0	0	FTR revenue \$0
		•	volume	
Gen 1 (solar)	OMW	\$0	volume OMW	\$0

Drivers of FTR auction outcomes

Factor	Impact
Expected congestion	Participants will be willing to pay more for an FTR for locations and times when expected congestion risk (expected FTR payout) is higher.
Contract positions	Participant demand for FTRs may be influenced by their contract position and the allocation of congestion risk in their contracts.
Technology type	Different generation technologies might expect their maximum preferred output to occur at different times (for example, during daylight hours for a solar farm). The mix of generators in particular parts of the network may therefore influence competition for particular FTR products.
Outages	Both scheduled loads and semi-/scheduled generators might consider planned outages, when an FTR may not be needed.
Number of participants	Auction prices could be expected to be higher if there are more participants bidding for particular FTRs.
Other risk management options	Demand for FTRs could be influenced by the cost and availability of other options to manage congestion risk (e.g., vertical integration, physical location)

Drivers of FTR auction outcomes

IMPACT ANALYSIS

Objectives of impact analysis

Stakeholders in response to the **June 2019 directions paper** suggested some form of quantitative analysis should be undertaken on the proposed model. Key objectives include:

- An evaluation of the **costs and benefits** of the proposed reform and whether it is likely to promote the NEO.
- Provide evidence to inform specific design decisions.
- Demonstrate the **distributional impacts**.
- Communicate what the reforms will look like in practice.

Proposed approach

Category	Nature of task	By December 2019	By Mid-2020
1. Costs of reform Implementation and ongoing costs		Comparable models	Survey of market participants, AEMO, AER
2. Benefits of	Benefits of reform	Comparable models	
reform	Risk management	WACC benefit	Survey of generators
	Operating incentives	Race to floor review	Forward modeling cost of race to the floor bids
	Dispatch efficiency	Benefits of dynamic loss factors	
	Locational incentives to invest	Historic costs of congestion - size of prize	
3. Policy Design	Market power	Zonal study of network - market power potential	
	Settlement residue to back FTRs		Simultaneous feasibility study - payout for FTRs
	Effect of VWAP pricing	TBD	TBD
4. Distributional impacts	Parties likely to benefit more or less		Distributional impacts, informed by 1 and 2
5. Communication	Simplified model of operation		Paper trial, 10 nodes

Cost of implementing proposed model

Costs for industry and market bodies take two forms:

- Implementation costs
- Ongoing costs

We propose to assess costs in two stages:

First stage: Research into cost of comparable reforms overseas, and revisit costing exercises in the NEM for comparable reforms.

Second stage: Survey of market participants and market bodies to understand implementation and ongoing costs. To be conducted later in the reform process, when the proposed model is more advanced and responses to the survey can consider these more detailed proposals.

Benefits of reform

Benefits of reform

• Research into comparable models (Dec 2019)

Risk management

- Improved investment certainty (Dec 2019)
- Survey generators and developers on the impact of FTRs on risk management (Mid-2020)

Improved operating incentives

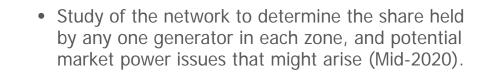
- Race to floor bidding research (Dec 2019)
- Forward modeling cost of race to floor bidding (Mid-2020)

Dispatch efficiency

Initial estimate of benefits of dynamic loss factors (Dec 2019)

Locational Incentives for investment

• Initial estimate of historic cost of congestion (Dec 2019)



Benefits are harder to model than costs

Policy design

Modelling of the proposed model could inform three key areas of policy design.

Revenue• feasibility studadequacy of FTRs• shared transm

• feasibility study of simultaneous FTRs across key shared transmission assets in the NEM (Mid-2020).

The effect of VWAP pricing

Market power

 Modelling VWAP would involve a full nodal model which the Commission does not plan to conduct at the current time.

Distributional impacts and a trial model

DISTRIBUTIONAL IMPACTS

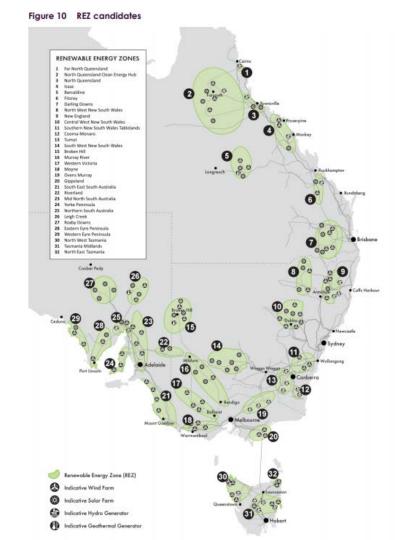
Assessment of the broad categories of the market that are expected to benefit from the model, and those that are expected to be worse off.

TRIAL MODEL

Paper trial of the proposed model, for example using **10 nodes** over a limited timeframe. This will help demonstrate how the model will work in practice.

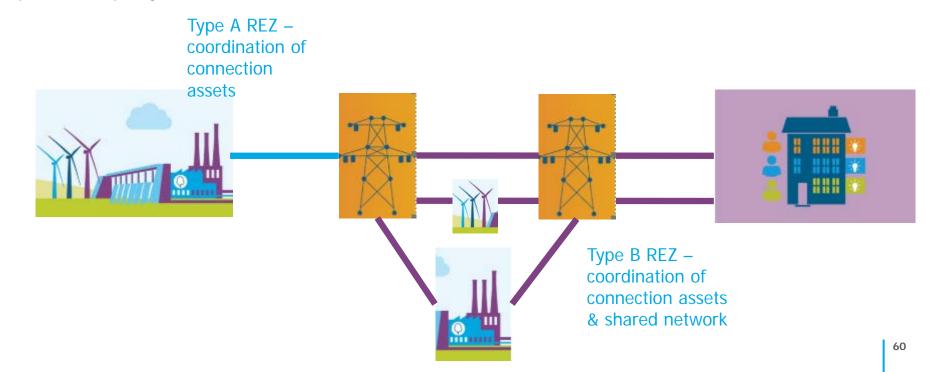
A basic simulated network will be constructed, providing simulated local prices and FTRs.

Stakeholder feedback on modelling

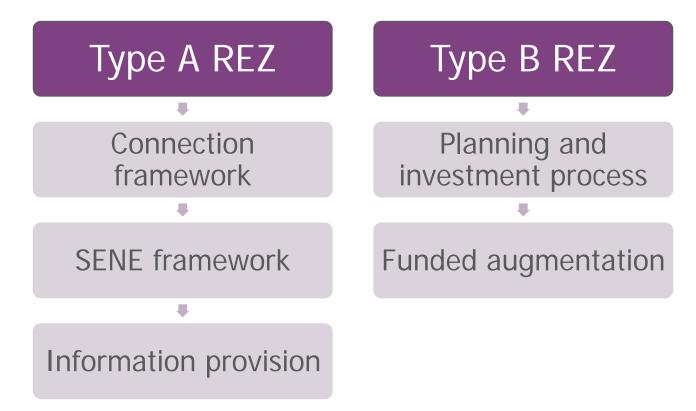

- Some stakeholders are in favour of one costbenefit exercise.
- We have not identified an appropriate approach that would be robust

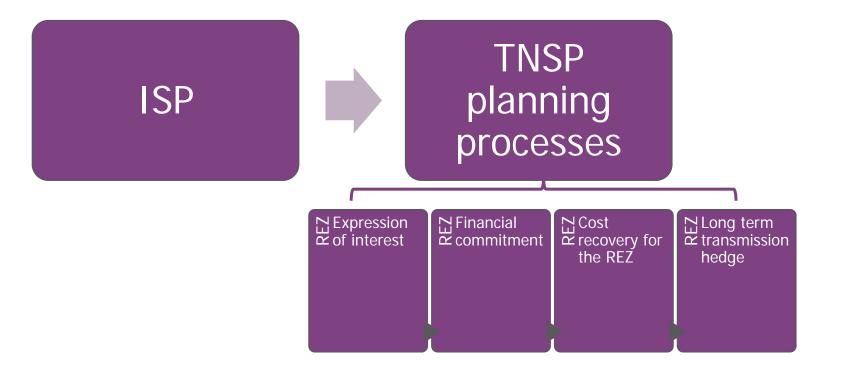
Model	Attributes	Positives	Negatives
Agent Based	Individual actions of profit maximizing agents	Models incentives and distributiona I impacts	 High costs. Highly uncertain to assume bidding strategies. Does not cover all modelling requirements (risk management)
Central Planner	Minimizes system costs to meet an objective (for example reliability)		 High costs. No account of bidding Does not model benefits of more efficient price signals for operations and investment Fails to model risk and impact on generator risk management and investment Assumes cost increases it seeks to determine
General Equilibrium	Macroeconom ic model of the economy as a whole		 Changes in electricity sector are an input to the model. Assumes answer it seeks to find Fails to address policy design issues

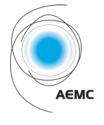
RENEWABLE ENERGY ZONES


Need for renewable energy zones

Renewable energy zones are areas with high resource potential where better coordination can enable the connection and dispatch of generators at a lower cost.




The concept of a 'renewable energy zone' is not defined in the existing regulatory framework, and is used by different parties to describe different ideas and concepts, depending on what a particular party wants to achieve and do.



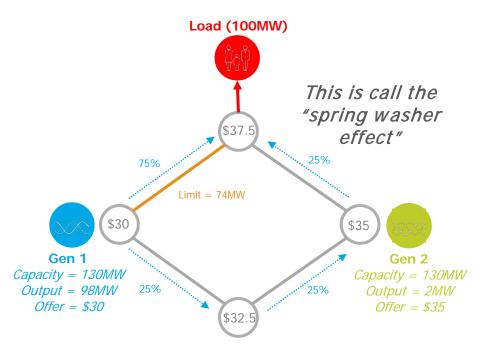
Ways in which REZs can currently be facilitated

Proposed model for renewable energy zones

Office address

Level 6, 201 Elizabeth Street Sydney NSW 2000

ABN: 49 236 270 144


Postal address

PO Box A2449 Sydney South NSW 1235

T (02) 8296 7800 F (02) 8296 7899

Dynamic regional pricing – detailed working

- To satisfy Kirchoff's laws, supplying an additional MW would require the generators to be redispatched
- For example, at the node where load is situated, the lowest cost way to supply the 1MW is to:
 - Reduce Gen 1 output by 0.5MW
 - Increase Gen 2 output by 1.5MW
 - Flow on orange line remains at 74: 0.5 x 75% 1.5 x 25% = 0
 - LMP = 1.5 x \$35 0.5 x \$30 = \$37.5 (i.e., cost of increasing Gen 2 less saving from reducing Gen 1)

Assumes all lines have equal impedance. Excludes effects of losses.